Home > ... > Forum 5019

Chaos, Disorder, and Mixing

9 October 2012, 07:26

In physics as well as in biology, an extreme sensitivity to perturbations and parameter variations seems to be a specific trait in the formation of complex mixing systems and in the spontaneous emergence of complex structures. For example, the role of small intrinsic effects or microscopic thermal fluctuations in crystal anisotropy is well known, though this does not usually make possible the prediction or control of equilibrium forms, as in the cases of dendrite growth (snowflakes), microstructure formation (alloys), or fracture dynamics (solid or terrestrial crust). Confronting this extraordinary proliferation of emergent forms and dynamics, the theorist J. S. Langer writes that no certainty exists that complexity physics can be successfully reduced to a small number of universality classes. The prospects for complexity science, nevertheless, seem excellent, he concludes, even thought we may have to accept both the infinite variety of phenomena and the idea that we may never find simple unifying principles.
Observed, described, and simulated on computers, the evolving behavior of unstable complex systems enriches our knowledge of what is possible, as well as our understanding of emergence and the mechanisms of self-organization. Without necessarily leading to the formulation of general laws, it can also contribute to our understanding of why complexity emerges so easily in nature.
In summary, not only does chaotic and complex systems science install a new dialectics between the local and the global, it also forces us to rethink the relationship between the individual and the universal, and between the singular and the generic. In an article published in 1980, Carlo Ginzburg has distinguished two great modes of exploring and interpreting phenomena in the social sciences. Inspired by the Galilean natural sciences, physics and astronomy, and aiming at conquering universality, the first mode is Ginzburg’s Galilean paradigm. The second mode, the paradigm of clues, is concerned with the barely visible detail, the trace, the revealing symptom of a hidden reality. Associated with these two paradigms, are two distinct methodologies: the former hypothetico-deductive, the latter inductive. Even if we still do not know exactly how, the sciences of complex systems, including biology and physics, will soon have to come to terms with this duality for themselves.

Any message or comments?

pre-moderation

This forum is moderated before publication: your contribution will only appear after being validated by an administrator.

Who are you?
Your post

To create paragraphs, just leave blank lines.